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On the quantum theory of the damped harmonic oscillator 
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Departamento de Fisica Tebrica, Facultad de Ciencias, Universidad de Salamanca, 
Salamanca, Spain 

Received 10 April 1984 

Abstract. The longstanding problem of the physical interpretation of the one-dimensional 
quantum damped oscillator is analysed here from the viewpoint of group theory. It is 
shown how to transform the system into a quantum oscillator with variable frequency. 
However, the main features of the final system are rather those of a simple stationary 
oscillator with ‘renormalised’ constant frequency. The quantum mechanical system cannot 
be at all interpreted as a ‘dissipative’ quantum system as has been claimed by some authors. 

1. Introduction 

Consider the classical motion of the one-dimensional damped harmonic oscillator, 
described by the equation 

m d2x/dt2 + b dxld t  + mwix = 0. ( 1 )  

As is well known, one can derive (1) from the so-called Bateman Lagrangian (Dekker 
1981) which has the following form: 

2 = e x p ( b t / m ) [ f m ( d x / d t ) 2 - i m w i x 2 ]  = (4”;) eYO‘(x2-x2). (2) 

Here, x = dx /d r  where yo = b/mwo and r = wot are dimensionless. Indeed, one can 
also construct, by using standard methods, a Hamiltonian which reads 

H = --Ya‘p2/2m eYarX2 (p=mwoeYo‘x). (3) 

It can easily be seen that (3) is not conserved (i.e. d H l d t Z 0 ) .  Proceeding in an 
‘orthodox’ manner, one can try to go into quantum mechanics by replacing p + ih a/ax 
and then solving the time-dependent Schrodinger equation 

a 
a t  

a2 
ax e x p ( - y , w o t ) ~ + 4 m w ~  exp(yowot)x2 +(x, t )  = ih-+(x, t ) .  (4) 

This is the Caldirola-Kanai equation (Dekker 1981). Although this mathematical 
problem seems to be easy to solve, the main question concerning the physical interpreta- 
tion of the system from the quantum mechanical viewpoint remains somewhat obscure. 
Does (4) represent a quantum system describing dissipation, as (3) usually represents 
a classical mechanical system with friction ? Is the phenomenological description of 
damping valid at the quantum level? These and other related questions have been a 
matter of debate for more than forty years. They have been answered in the affirmative 
(Caldirola 1941, 1983, Dodonov and Manko 1978, 1979) and also in the negative 
(Senitzky 1960, Greenberger 1979). There also exists an alternative interpretation of 
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the Caldirola-Kanai equation (4) as describing a quantum system with exponentially 
varying mass (Colegrave and Abdalla 1981, Leach 1983), as well as a fairly large 
amount of literature considering several other aspects of this Hamiltonian in the 
quantum domain. For a review see Dekker (1981). 

In this paper, we shall try to clarify the issue, but hope not to add more confusion 
to that already existing. In order to do so, we start from a point of view which has 
been overlooked by other authors, namely, group theory. In a preceding paper (Cerver6 
and Villarroel 1984) we have analysed the groups leaving the equation of motion ( 1 )  
unchanged and the action (2) invariant, the latter being a subgroup of the former. This 
large group of symmetry has several interesting properties: it allows for a time transfor- 
mation (still a canonical transformation) which leads us to contemplate the Lagrangian 
(2) as that of a harmonic oscillator with variable frequency and with a very specific 
(and unique) time dependence for the frequency. The theory of the harmonic oscillator 
with variable frequency has been considered by a large number of authors as far as 
the invariance group and constants of motion are concerned (Prince and Eliezer 1980, 
Leach 1980, Takayama 1982, Colegrave and Abdalla 1983). Also coherent states have 
been constructed for this system very recently (Hartley and Ray 1982). We shall use 
many of these results and we shall extend and generalise some of them in order to 
apply them to our specific problem. The conclusion will be, roughly speaking, that 
due to the large group of symmetry, group theory forces us to a unique consistent 
physical interpretation of the Caldirola-Kanai equation. This interpretation is not 
consistent either with dissipation (loss energy states) or with variable mass. It must 
only be interpreted as the only variable frequency oscillator with minimum uncertainty. 
This statement will be clarified at the end of the paper. 

The plan of this paper is as follows. In § 2 we shall revise our previous results in 
group theory of the damped harmonic oscillator. Section 3 is devoted to a similar 
group theoretical analysis of the harmonic oscillator with variable frequency. In 0 4 
we show briefly the standard quantisation of the Caldirola-Kanai Hamiltonian and 
we shall recover the well known coordinate-dependent wavefunctions. In 0 5 we revise 
the quantum theory of the harmonic oscillator with variable frequency and special 
attention is paid to the coherent state representation for this case. The transformation 
from damping to variable frequency is carried out in § 6 which also contains the 
physical interpretation, the main features of our quantum mechanical system and the 
conclusions. We close with an appendix dealing with the contact symmetry group of 
the variable frequency classical oscillator: a novel result that we have found as a 
byproduct of our group theoretical considerations. 

2. Group theory of the damped harmonic oscillator 

This section summarises the results obtained by us in a preceding paper (Cerver6 and 
Villarroel 1984). The symmetry group of (1 )  is SL(3, R )  and consists of the following 
eight infinitesimal generators: 

Yo 
2 

cosh(y7) -- sinh( y7) 
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G - -i eyos/2 { x sinh (-) Y7 - a + [ cosh (7) -: sinh ( 7)]x2:}, 

G8 = eYor/’ { x cosh( 1) Y7 a + [ :sinh (7) -f cosh ( 
2 a7 

7- 

where y = (y i -4)”2 .  Only {GI, G2, G3, G4 and G,} are symmetry generators of the 
action (2). Through Noether’s theorem we obtain five invariants, associated to these 
generators : 

I ,  = e ’aT{ (x2 + x’) sinh( 77) - xx[ y cosh( 77) - yo sinh( yr)] 

+ix2[y2 sinh( 77) - yyo cosh( y ~ ) ] } ,  

I2 = eyoT{(x2 +x2)  cosh( y ~ )  - xx[y sinh( 77) - yo cosh(y~)]  

+fx2[y2 cosh( y ~ )  - yyu sinh( y ~ ) ] } ,  

A 2 = -  YO+Y 
2 ’  

A,=- 
2 ’  

I3 = eAzT(x + A,x) 
Z4=eAlT(x +A,x) 

We also obtain the following relations among them: 

I, = f( 1: - I:), I2  = $( 1: + :), I ,  = IJ,. (7) 

Since the action is invariant under GS, we easily see that this generator is a 
non-conventional Hamiltonian (not a Legendre transform but certainly conserved) as 
opposed to the conventional one (Legendre transformed but not conserved). Let us 
consider G, as a vector field associated to the system (2). Thus, we have 

2 dx 2 dx 2 dp 
Yo x Yo x Yo P 

d7=  ---=---=-- 

where we have used p = muo exp( yor)x.  The first integrals of the above differential 
system are 

Q = ~ X P (  ’YOT/~)X,  p = exp(-yo.r/2)p, (8) 

and { 0, P }  = 1. The resulting Hamiltonian after performing this canonical transforma- 
tion is 

H* = P2/2m +$moiQ2 +iwoyoQP. (9) 

It is trivial to see that (9) is the invariant I, in (tmwi)-units: 
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3. Group theory of the harmonic oscillator with variable frequency 

The equations of motion are 

d2x/dt2 +Q2( t)x = 0 

and the Lagrangian per unit mass, has the form 

9=i (dx/d t ) ' - iQ2( t )x2 .  

The group leaving ( 1  1) invariant was recently found (Leach 1980, Prince and Eliezer 
1980) and the infinitesimal generators have the form 

F,  = p2 sin 28 slat + x (  pp sin 28 +COS 213) alax, 

F2 = p 2  COS 2 8  slat +x(  pp COS 28 -sin 28) alax, 

F3 = p COS e alax, F4 = p sin e alax, 

F5 = p2 a l a r  +ppx alax, F~ = x alax, (13) 

F,= xp sin e a l a t  +x2( p sin 8 + p - l  cos e )  $/ax, 

F8 = xp COS e d l a t  +x2( p COS 8 - p-'  sin e) alax, 

and they close the SL(3, R )  Lie algebra if the auxiliary variable p( t )  is the solution 
of the Pinney equation (Pinney 1950) 

i; +a'( t ) p  = p-3 

e(  t )  = ds pP2(  s). (15) 

(14) 
and e ( t )  is defined as 

ld 
It is interesting to notice that the Lie algebra closed by the F's in (13) is SL(3, R )  

independently of whether we can find a solution of (14) or not. Only the differential 
equation (14) has to be used in order to recover the rules for this Lie algebra. 

The group leaving the action invariant is formed by the subgroup { F , ,  F2, F3, F4 
and F5}  of (13). These generators yield the following Noether invariants: 

J, = f [ ( x p - x p ) 2 s i n 2 ~ - x 2 p - 2 s i n 2 ~ + 2 x p - 1 ( x p - x p )  COS 281, 

J2=i[(xp-xp)2cos 2 ~ - x 2 p - 2 c o s 2 8 - 2 x p - 1 ( x p - x p )  sin281, 

J3 = [(xp - xp )  cos 0 - xp-' sin e], 
j4 = [xp-' cos e + (xb - xp )  sin e], 

(16) 

J5 =f[(xp - Xp)2 + ~ ~ p - ~ ] ,  

and they also verify 

J1 = J3 54, JZ = f( J: - J i ) ,  J5 = ;( J: + J i ) .  

4. Quantum mechanics of the damped harmonic oscillator 

The conventional procedure for quantising the classical system (2) is, as we have 
already said, to solve the time-dependent Schrodinger equation (the Caldirola-Kanai 
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equation) arising from the choice of (3) as the conventional Hamiltonian operator. 
This method leads to well known wavefunctions (Dodonov and Manko 1978, 1979), 
which have several interesting features commonly interpreted as describing ‘loss energy’ 
states by the authors that support the idea that (4) represents a true physical quantum 
dissipative system. The difficulties arising from this interpretation have been extensively 
discussed. A masterly account has been given by Greenberger (1979). The main 
drawback concerns the uncertainty principle which has the form 

( A x ) ( A p )  2 fh exp(-yoT) (18) 

and turns out to be vanishingly small for large times. We think that this difficulty is 
only the tip of the iceberg. All problems really come from the ambiguity related to a 
judicious choice of the Hamiltonian. The Hamiltonian (3) is not conserved since it is 
not included in the set of invariants ( 6 ) .  A conserved ‘Hamiltonian’ exists as a constant 
of motion but it turns out to be not a Legendre transform from Lagrangian (2) and 
hence it is not related to a symplectic form of the mechanical system described by this 
Lagrangian. This non-conventional ‘Hamiltonian’ is obviously H* given by (9)-( 10) 
and related to the 1, invariant. However, if we select it as a true Hamiltonian, we can 
find the solution of the stationary problem 

H*I+n) = Enl+n) (19) 
which has also been solved (Dodonov and Manko 1978) with the following curious 
result: 

E,  = f hwo  y( n +f) ,  

xexp(-a2Q2/2)Hn(aQ), 

where a = ( muO ~ / 2 h ) I ’ ~ ,  y = (4 - y;)’” and H,, are the Hermite polynomials. Notice 
that substituting in (20) Q = x exp(ty,.r) given by (8) we obtain time-dependent 
wavefunctions which are exactly the solutions of (4). Therefore, the stationary solutions 
for H* are also the time-dependent ones for H, using the canonical transformation 
(8). Indeed, we know from standard quantum mechanics that given an invariant of 
the quantum system (in this case H*) we have 

(21) dH*/d t  = aH/d t  +(l/ ih)[H, H*] = 0. 

ih  (” = HI+) (22) 

ih(”*l+)) = H(H*I+)). (23) 

If )+I) is a vector state of H 

we obtain, using (2 1 ) (Lewis and Riesenfeld 1969) the following identity: 

The eigenvectors of H are also a subset of solutions of the stationary problem for 
H*. In our case, even the relative phase between vector states of both problems is a 
trivial constant and we recover the above result. 

All these coincident features are a clear signal that we are dealing with a simple 
harmonic oscillator without dissipation. This view is supported by the fact that the 
symmetry group for the damped harmonic oscillator and for the harmonic oscillator, 
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even with variable frequency, are the same. Roughly speaking, the problem has too 
much symmetry and this large symmetry allows us to see the system from different 
points of view and, apparently, with different physical interpretations. It is this last 
point in which mistakes might arise. The physical interpretation is unique and we 
shall see how this subtle point can be uncovered with the help of the symmetry group 
itself!. In 0 5 we revise the coherent state representation for the variable frequency 
oscillator in the general case in order to compare with the specific case in which we 
are interested, later on. 

5. The coherent state representation for the time-dependent harmonic oscillator 

As has been recently shown (Hartley and Ray 1982), we can construct a coherent set 
of states for the quantum system described by the Hailtonian 

A = $2 +fa’( t )X2  (24) 

arising from (12). One can define 6 ( t )  and 6’(t) operators as 

Of course, [ 6 ( t ) ,  st(?)]= 1. The operators (25)-(26) are connected to the J3 and J4 
invariants in (16). The J5 invariant can be cast in the form 

J5=h[Gt(t)8(t) +f] (27) 

Using (27), the eigenvalue problem for J5 can be exactly solved just as for the 
time-independent case. Thus, we have 

Jsln, 0 = fi(n +$)I., t ) ,  (28a) 

z;(t)ln, t)=J;;Jn-l, t ) ,  ii+(r)\n, r > = J n + r l n  + I ,  t ) .  W b ,  c) 

Defining the phase functions as 

a, ( t )  = -(n +$) lof dsp-*(s), 

the general solution of the time-dependent Schrodinger equation for H in (24) is 
(Lewis and Riesenfeld 1969) 

14, O s  =C cn exp[ia,(t)lln, t )  
n 

and the coherent states are given by (Hartley and Ray 1982) 

where we have used the obvious notation 
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Finally, Hartley and Ray also gave the expression for the uncertainty in the coherent 
state representation for this case of variable frequency: 

( A X ) ~ ( A ~ ) ~  =fh(p2p2+1)”2 (32) 

which shows that these coherent states are not of minimum uncertainty and they spread 
in time. We shall find an important exception: exactly our case. 

6. The transformation from damping to variable frequency 

Let us write (3) in the form 

H ( t )  = p 2 / 2 m ( t )  + f w : m ( t ) x 2 ,  m ( t )  = m exp(yooot). (33) 

Applying a time transformation of the form (Leach 1983) 

the new Hamiltonian is ( p  = p,  x = f )  

H(S) = f p 2 + f ( l / y : i * ) X 2 .  

a(?) = (yJ)-I. 

Comparing with (24) we can easily identify 

(35) 

The Pinney equation (14) for this functional form of the frequency is 

z; + (1/ # ) p  = p-3 

p ( ~ ) = [ a ~ ~ n + i ~ ~ ~ ~ n + p ~ ~ o - i ~ ~ 2 ~ o + 2 ( a ~  + y ; / y  2 ) 1 / 2 -  t ]  1 / 2  , 

(37)  

(38) 

One must take a = p = 0 for consistency. Then p ( 7 )  = (2y0/y)‘/271/2. The invariant 
J ,  can easily be found with this form of p(7 )  and we indeed obtain our previous H* 
in the old coordinates. Now, let us apply the results of the quantum harmonic oscillator 
to this particular time dependence. We easily obtain from (29) 

whose general solution takes the form 

a, ( t )  = $ w o y ( n  + f ) r  (39) 
which corresponds to a stationary harmonic oscillator (i.e. the simple time-independent 
oscillator with the frequency ‘renormalised’ to 00y/2). More important is the form of 
the uncertainty principle (32). We trivially obtain 

(Ax)a(Ap)a  = A / Y .  (40) 

Indeed, the harmonic oscillator limit is y = 2. Therefore, we have for our original 
‘damped’ system: no non-trivial quantum mechanical time dependence (39), no spread- 
ing (40) of the coherent states, and of course, no loss energy and no dissipation. The 
quantum mechanical system is just a harmonic oscillator with constant frequency equal 
to 00y/2. The spectrum is given by E,  =khwoy(n +f). 

In the past, a large amount of physical information was in need of a rigorous and 
satisfactory mathematical framework. In this modest example we have encountered 
an opposite situation: a detailed mathematical analysis forces the physical system to 
have just one unambiguous physical interpretation. 



2970 J M Cervero and J Villarroel 

Appendix. Contact symmetry group for the harmonic oscillator with variable frequency 

Contact symmetries seem to be of importance for the total integrability of a classical 
system. This group of symmetries was recently found for the simple harmonic oscillator 
(Schwarz 1983) and also for the damped harmonic oscillator (Cerver6 and Villarroel 
1984). Here, we present a general result concerning such a contact group for the 
variable frequency harmonic oscillator. The differential equation is 

('41 1 d2x/dt2 +a2( t )x  = 0 

and we have to solve the contact invariance condition: 

where 

a2 w 
+2qp- 

and p = dx/dt, q = d2x/dt2. Here, W E  W(x, p ,  t )  is the so-called generating function 
of the contact transformation. The equation (A3) gives rise to a partial differential 
equation for W: 

a2w a2w a2w a2 w 
-+2p-+p27-2aZ(l)Xp- 
a t2  a t  ax ax ax ap 

a2 w aw aw +a4( t ) X 2 ~ - a 2 ( t ) X - - 2 a (  t)h(t)x- 
aP ax aP 

a2(t)-22R2(t)x-=o. 
a2 w 
at ap 

Choosing the following set of characteristic curves: 

(A51 U = (xb - pp) sin 6 + (x /p)  COS e, 
where P and e verify (14) and (151, one can always change the (x,p) variables to the 
(U, U )  variables. Then we find that (A4) reduces to 

a2 w/at2 +a2( t )  w =  0 (A6) 

and now, since W =  W(u, U, t ) ,  the general solution of (A6) can be trivially written 
down in the form 

v = (xb - p p >  cos e - (x /p)  sin e, 

W(u, V, t )  = A,(u, v ) p  cos 8 +Az(u, v ) p  sin 0. ('47) 

Therefore, the contact invariance group of (Al)  is also (as in all the previous 
studied cases) an infinite-parameter Lie group. 

For specific choices of A , (  U, U )  and A2( U, U )  we shall recover the point group already 
found (Prince and Eliezer 1980, Leach 1980) since the point group is a finite-parameter 
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subgroup of the contact invariance group. These choices are displayed in the table 
below. 

In the preceding derivation of the generating function we have made use of the 
following facts which greatly simplify the calculations. Let us write U and U in the form 

U = v , p  - i , x ,  (A81 

i;, + f 1 2 ( t ) v ,  = i;,+f12(t)v,=0. ('49) 

U = v ,p  - 3,x. 

Then the functions v ,  and v2 verify equation ( A l )  in the form 
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